Spin density waves in periodically strained graphene nanoribbons
نویسندگان
چکیده
منابع مشابه
Spin density waves in periodically strained graphene nanoribbons.
Zigzag graphene nanoribbons (ZGNRs) are antiferromagnetic in the ground state with zero net magnetization due to the compensation of contributions from opposite edges. Uniform deformations (both shear and axial) do not produce magnetization due to symmetry restrictions. However, we report the results of first-principles calculations that predict the induction of spin density waves (SDWs) in ZGN...
متن کاملTunable thermal transport and thermal rectification in strained graphene nanoribbons
K. G. S. H. Gunawardana,1,* Kieran Mullen,1 Jiuning Hu,2 Yong P. Chen,2,3 and Xiulin Ruan4 1Homer L. Dodge Department of Physics and Astronomy, Center for Semiconductor Physics in Nanostructures, The University of Oklahoma, Norman, Oklahoma 73069, USA 2Birk Nanotechnology Center and School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA 3Birk Nanote...
متن کاملSpin channels in functionalized graphene nanoribbons.
We characterize the transport properties of functionalized graphene nanoribbons using extensive first-principles calculations based on density functional theory (DFT) that encompass both monovalent and divalent ligands, hydrogenated defects, and vacancies. We find that the edge metallic states are preserved under a variety of chemical environments, while bulk conducting channels can be easily d...
متن کاملSpin transport in rough graphene nanoribbons
We investigate spin conductance in zigzag graphene nanoribbons and propose a spin injection method based only on graphene. Combining density functional theory with tight-binding transport calculations, we find that nanoribbons with asymmetrically shaped edges show a non-zero spin conductance and can be used for spin injection. Furthermore, nanoribbons with rough edges exhibit mesoscopic spin co...
متن کاملElectron transport, interaction and spin in graphene and graphene nanoribbons
Since the isolation of graphene in 2004, this novel material has become the major object of modern condensed matter physics. Despite of enormous research activity in this field, there are still a number of fundamental phenomena that remain unexplained and challenge researchers for further investigations. Moreover, due to its unique electronic properties, graphene is considered as a promising ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanoscale
سال: 2014
ISSN: 2040-3364,2040-3372
DOI: 10.1039/c3nr06199j